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An approximate method for solving an incorrect Cauchy problem for a nonhyperbolic system of  equa- 
tions of  a vapor-liquid f low barotropic model has been developed. The method is based on the approxi- 
mation of  a fluctuating parameter - the vapor phase density - by a random delta-correlated process 
and subsequent averaging of  the stochastic equations obtained by its realization. Such a procedure 
allows one to reduce the matrix of  the nonhyperbolic system coefficients to Hermitian form and to 
obtain a characteristic polynomial all the roots of  which are real, Le., i t  enable one to eliminate the 
incorrectness of  the problem. The results of  numerical realization have shown the steady-state character 
of  the solution, which is in good agreement with experimental data. 

1. It is well known that a basis system of equations for a two-liquid model of a vapor-liquid flow is a hyperbolic 
one [1]. Various simplifying physical assumptions lead to models with a "pathology," attributed to the loss of the hyperbol- 
ic character of the basis system and to instability of its solution. This problem has been considered in a number of works 
[1, 7-10], in which themethods for compensating nonhyperbolicity leading to a significant reduction of its domain were 
discussed. However, as a rule, one does not succeed in excluding it completely. Different algorithmic procedures suppress- 
ing the development of a solution instability can lead to an unestimated numerical diffusion. The source of difficulties lies 
in the existence of a hypothesis about the equality of phase pressures, and the usage of models with unequal pressures [11] 
seems quite natural. For engineering applications, this model, however, is not used in practice, since reliable information 
concerning the construction of closing relations when determining coefficients and right-hand sides of the system of basic 

equations of this model is not available. 
Let us show the possibility of statistical regularization of the solution of a nonhyperbolic system of equations of the 

model of unequal velocities, temperatures, and equal phase pressures. For this purpose, we introduce the procedure of 
stochastic approximation of a fluctuating parameter and subsequent averaging of the system equations. The term "statistical 
regularization" was, evidently, suggested for the first time in [12, 13], in the given case, regularization with respect to the 

stochastic parameter of a vapor-liquid flow is implied. 
2. Generally accepted operators for equation averaging with respect to the number of realizations, space, and time 

[1] are trivial in the sense that the statistical properties of the parameters used in these operators yield only the definition 
of the mean values [2]. Consider now the approach employing nontrivial statistical properties of the parameters of two- 
phase media. Taking into consideration space-time parameter fluctuations in two-phase flows, it is possible to apply the 
procedure of statistical averaging, which allows for the stochastic character of fluctuating parameters. It is well known (for 
example, [3]) that in many physical problems the process of parameter variation in time can be considered in the approxi- 
mation of delta-correlated random processes. In particular, as applied to vapor-liquid flows, such approximation of 
fluctuating parameters has a fairly clear physical nature: spontaneous processes of vapor bubble generation, their collapse, 
formation of films, shells can be treated as jumps of the statistical mean parameter values for the delta-correlated process 
under consideration. For the time distribution parameter values of the flow, resulting from the effect of the simultaneous 
action of a combination of factors, the Gaussian character of fluctuations can be considered acceptable. Such an approxima- 

tion is widely used, for example, for the consideration of turbulent flows [4-6]. 
Assume the system of equations [9] as a basis one: 
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where D{Dt  = 3f0t + Wk(010z), pk, h~, ~ok, are pressure, enthalpy, volume concentration of phases; a k is the propagation 
velocity of acoustic disturbances over the phase; II~, IIz, II3, are the right-hand sides of equations, k = g, l (g is the steam 

phase, l is the liquid one). Assuming pg = p~ = p, after transformations, we obtain the following system of equations: 
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where 
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The vector of unknowns of the system (4)-(7): S = S(Wg, W~, p, (r hg, h~); the following determinant corresponds to the 

matrix of this system: 
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where v stands for the characteristic directions of the system, mll = Wg, 
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The appropriate characteristic polynomial has the form 
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from which it follows that v, = Wg, P2 = Wl are its two roots, whereas the rest are the roots of the polynomial enclosed 
in curly brackets expression (9). The latter ones include complex roots, and thus the Cauchy problem becomes incorrect. 
The suggested approach to the hyperbolization of system (4)-(7) consists in reducing the matrix of its coefficients to 
Hermitian form, characteristic directions of which are real. This result is obtained by the stochastic approximation of a 
certain flow-parameter and the subsequent averaging of equations with respect to its realizations. Owing to the statistical 
character of processes in two-phase flows, fluctuations of density of the vapor phase always occur, and to a lesser degree, 
those of the liquid one. Let us present the density of the steam phase as a random function equal to the sum of the 

averaged and pulsating terms: 

Pz = v P~ ) -? 6pz (t), (10) 

it being (~pg) = 0. Since 6pg < <  (pg), Eq. (10) can be presented in the following form: 

6p_______q~ ~ ( pe ) exp ~ . Pc= (Pz)  I + (P~) (P~)  (11) 

By analogy, using the known expansion, we present the value of p-lg: 
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Since the vapor phase fluctuations are of a pulsating (wave) character [14] and can be described by the delta-correlated 

Gaussian process, we introduce the complex correlation function 

( 6pg (tx) 6pg (t~)) = 2ioa6 (tx - -  t~), (13) 

where a is the dispersion of the vapor phase density. In the given case, pg has been chosen as a stochastic parameter due 
to the fact that in the case when strong disturbances of other parameters of the flow are absent, the density of the vapor 
phase and pressure have the highest degree of correlation. In this case, correlation between the density and concentration 

fields can be neglected. In the approximation of mutual statistical independence of the parameters Wk, ~Ok, hk, &, ~o~, and p, 
assuming a2k ~ const, we should further perform averaging of the system of equations with respect to the realizations of 
the random process pg. Prior to that, let us transform determinant (8) and the appropriate equations of the system (4)-(7). 
Since expansion of the determinant into the ross and m66 elements yields real roots, it is sufficient to consider the determi- 
nant ]mij [ (i, j = 1, 2, 3, 4), producing complex characteristic directions. Let us take the common factors R, ~oR(&a2g) - ' ,  
a2gR -', p-I t outside the sign of this determinant, which corresponds to division of the appropriate system equations by these 

values. As a result of these transformations, we obtain the determinant 
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Fig. 1. Experimental and predicted pressure Values: 1) experiment; 2) the 
result [9]; 3) the result of the present work; 4) homogeneous equilibrium 
model; p, MPa; t, sec. 
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which gives the polynomial in the curly brackets of expression (9). As a result of the transformations of the system 
equations in compliance with the form of determinant (14) and their averaging with respect to the realization of the process 
og, terms appear which contain stochastic nonlinearities: {p-lg(Op/Oz)), (pg(OWg/OZ)). We reveal them, using the 
Furuttsu-Novikov equation and correlation (13). Taking into account (11) and (12), we obtain, respectively 
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Multiplying the averaged equation (4) by <pg)2 w e  finally get the matrix of coefficients of the averaged system in Her- 
mitian form and the determinant 
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which possesses Hermitian character with accuracy up to the operator ( -2o2<  pg> -10/0z), which creates the second 

derivatives. 
3. It is known [14] that p(z), Wg(z) are the functions close to linear ones. Allowing also for the fact that for the 

second derivatives the determinant is o ~ < < (Og), one can assume that it is possible to neglect terms which contain the 
second derivatives. But this assumption, however, is not evident and requires verification. For this purpose, the effect 
exerted on the numerical results by terms comprising the second derivatives of velocity and pressure at different values of 
the dispersion a has been investigated. The largest relative discrepancy in the results, with account for and account for the 
second derivatives, does not exceed 0.20. 

Figure 1 presents the result of the numerical realization of the proposed approach, as applied to the prediction of 
pressure in the case of boiling-up water effluxing from an unheated horizontal tube filled by subcooled (up to the saturation 
temperature) water at the following initial parameters: pressure P0 = 7 MPa, temperature T O = 513 K [9]. The solution 

obtained is of a steady-state character and satisfactorily agrees with the experimental data. 

NOTATION 
a, velocity of propagation of acoustic disturbances over the phase, [m.sec-~]; D/Dt, substantial derivative; h, 

enthalpy, J; i, imaginary unit; m, determinant element; II, the right-hand side of an equation; p, pressure, Pa; S, vector of 
unknowns; T, temperature, K; t, time, sec; W, phase velocity, m~ec-~; z, coordinate, m; 6, delta function; u, root of a 
characteristic equation; o, phase density, kg'm-3; a, gas phase density dispersion, kgxn-3; ,p, volumetric phase concen- 
tration. Indices: g, gas phase; I, liquid phase; 0, initial value of a parameter. 
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